Preparation of biologically active Arabidopsis ribosomes and comparison with yeast ribosomes for binding to a tRNA-mimic that enhances translation of plant plus-strand RNA viruses

نویسندگان

  • Vera A. Stupina
  • Anne E. Simon
چکیده

Isolation of biologically active cell components from multicellular eukaryotic organisms often poses difficult challenges such as low yields and inability to retain the integrity and functionality of the purified compound. We previously identified a cap-independent translation enhancer (3'CITE) in the 3'UTR of Turnip crinkle virus (TCV) that structurally mimics a tRNA and binds to yeast 80S ribosomes and 60S subunits in the P-site. Yeast ribosomes were used for these studies due to the lack of methods for isolation of plant ribosomes with high yields and integrity. To carry out studies with more natural components, a simple and efficient procedure has been developed for the isolation of large quantities of high quality ribosomes and ribosomal subunits from Arabidopsis thaliana protoplasts prepared from seed-derived callus tissue. Attempts to isolate high quality ribosomes from wheat germ, bean sprouts, and evacuolated protoplasts were unsuccessful. Addition of purified Arabidopsis 80S plant ribosomes to ribosome-depleted wheat germ lysates resulted in a greater than 1200-fold enhancement in in vitro translation of a luciferase reporter construct. The TCV 3'CITE bound to ribosomes with a three to sevenfold higher efficiency when using plant 80S ribosomes compared with yeast ribosomes, indicating that this viral translational enhancer is adapted to interact more efficiently with host plant ribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits.

During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5' cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5' ends with substantial IRES activity but instead have 3' translational e...

متن کامل

Entrapping Ribosomes for Viral Translation tRNA Mimicry as a Molecular Trojan Horse

Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Her...

متن کامل

Use of single-stranded DNA oligonucleotides in programming ribosomes for translation.

Single-stranded DNA (ssDNA) oligomers were compared to synthetic RNA oligomers in their ability to program E. coli ribosomes in vitro. AUG and dATG-containing oligomers promoted the non-enzymatic binding of fmet-tRNA to ribosomes, with similar dependence on time and magnesium concentration; only at 10 mM Mg++ or at low oligomer concentration was RNA slightly preferred in complex formation. Thes...

متن کامل

The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases.

In plants, all aminoacyl-tRNA synthetases are nuclearly encoded, despite the fact that their activities are required in the three protein-synthesizing cell compartments (cytosol, mitochondria, and chloroplasts). To investigate targeting of these enzymes, we cloned cDNAs encoding alanyl-tRNA synthetase (AlaRS) and the corresponding nuclear gene, ALATS, from Arabidopsis by using degenerate polyme...

متن کامل

The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames.

Upstream open reading frames (uORFs) are protein coding elements in the 5' leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013